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It is shown that the Zawadzki -- Bretsznajder rule, compensation effect, and iso- 
kinetic temperature are simple consequences of interpretation of the Arrhenius equation 
as a projection correlation, it is established that such an interpretation of the Arrhenius 
equation allows the discrimination of the deviation factors which impart a definite 
(although not always simple and recognized) physical sense, to the known empirical 
correlation. A possibility of deriving new correlation relationships by this method of 
reasoning is presented. 

Thermal dissociation of solids, crystalline starting materials or mineral raw 
materials is usually carried out to obtain solid products of required chemical and 
phase compositions, appropriate activity and utilizability for further technological 
applications, or to obtain desired gaseous products. Typical, trivial examples 
of such processes are: the thermal decomposition of limestones in the sugar 
industry and in the production of building materials; the decompositions of chro- 
mium(III), magnesium (II), strontium(II), manganese(II) and other carbonates 
in the production of oxide catalysts; the dissociation of carbonyls and iodides 
in the preparation of metals of very high purity; the dehydration of crystalline 
hydrates in the production of surface-active agents; and many others. 

The practical utilization of thermal decomposition reactions is responsible for 
the fact that the knowledge of the mechanisms and the rates of these reactions is 
one of  the most important problems of contemporary chemical investigations. 
The solution of these problems is a very difficult and time-consuming task, but 
it allows the intensification of very important technological processes. 

The very complex nature of topochemical processes of the type 

AsoliJ ~ BsoliJ q- Cgas 

led to the fact that, since the first Lewis work on this subject (published in 1905), 
no attempt to give a general theory of such processes has been made until today. 
However, some regularities concerning the courses of these processes have been 
known for many years, and more and more attempts towards their theoretical 
elucidation have been observed recently. 
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The aim of the present work was to find a relationship between one of these 
regularities, usually referred to as the Zawadzki-Bretsznajder  rule, and the com- 
pensation effect, which is recognized as one of the fundamental laws of chemical 
kinetics. We also aimed to prove that a direct consequence of this rule is the 
existence of the isokinetic temperature, a knowledge of which allows calculation 
of the constant term in the compensation equation. 

Compensation effect and isokinetic 
temperature in a thermal dissociation reaction of  the type 

Asolid ~- Bsotid q- Cgas 

During studies on the thermal dissociation of calcium carbonate under different 
pressures of the gaseous reaction product, Zawadzki and Bretsznajder [1] were 
first to observe that the activation energy of the process was a function of the 
pressure of the gaseous reaction product 

E = f ( P c o )  (1) 

and it increased (in the decomposition of CaCO 0 from E = 40 kcal/mole for p = 
= 10 - a m m  Hg to E = 376 kcal/mole for p = 45 mm Hg) with increasing CO2 
pressure. Similar relationships were later observed for carbonates, hydroxides, 
oxides and peroxides, sulfates and basic sulfates, oxalates, ammonium complexes, 
and crystalline hydrates. 

The Zawadzki-Bretsznajder  rule was theoretically confirmed by Pavluchenko 
and Prodan [2] in 1961 after a thorough analysis of a reversible reaction of the 
type Asoli d ~ Bsoli d = Cgas. These workers derived the following expression for 
the activation energy of thermal dissociation at constant temperature: 

P~ (2) E = E 2 + ,~ + mO p~ _ pm 

where Ez = activation energy of the association process (e.g. synthesis of CaCOz 
from CaO and C Q ) ;  

,~ = adsorption (or desorption) heat of the gaseous reaction product;  
Q = heat of dissociation; 
Po = decomposition pressure (equilibrium pressure of the gaseous prod- 

uct at the temperature of the reaction); 
p = pressure of the gaseous product in the reaction system; 
m = constant; 0_< m _< 1, 

For pm ~ 0 (i.e. for high vacuum) 

l i r a - - -  - 1 p~ _ pm 

and: 
E =  E2-}- 2 + mQ (3) 
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whereas for pm ~ p~n 

and: 

lim P~ - oo 
p~n _ ffm 

Hence for 0 < p < P0 we have 

E = oo. (4 )  

E2 ! 2 + mQ <_ E < co (5) 

and Eq. (5) becomes equivalent to the Zawadzki-Bretsznajder  rule (1). 
1 

Relationships (I) and (5) may be represented in the coordinate system In k, - ~ ,  

i.e. in the Arrhenius diagram, and they can be described by the Arrhenius equation 

E 
In k = A - R-T- (5a) 

or: k = A "exp --~--Tr (5b) 

where: k = dissociation rate constant; 
A = pre-exponential coefficient; 
R = gas constant; 
T = absolute temperature. 

If, according to Eqs (1) and (5), the value o r e  increases considerably due to an 
increase in p, then the increase of E can not be compensated by the increase of 
T alone, but the value of  A in Eq. (Sb) must also be changed. The relation between 
A and E is represented by an empirical equation, usually referred to as the com- 
pensation equation [3]: 

lnA = a + b  + E  (6) 
where a and b are constants. 

The compensation equation represents a kind of general relationship, since 
a compensation effect has been observed in many catalytic reactions, during 

S 

p: _const \ 
p! =const 

P3=Const 

Fig. 1 

<A / 

0 - p . -  
E 

F i g .  2 
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measurements of viscosity and diffusion, in studies on electric conductance and 
electron emission, in biological processes and in the thermal dissociations of many 
solids (see 3 and literature included there). Relation (6) can be represented graphi- 
cally in the coordinate system In A, E (Fig. 2). 

For reactions of the type discussed here the value of A is usually equal to 0, 
and the values of b can be found from the slopes of the lines. 

A 
] - -  IIx Pl < P2 <P3 <Pz. < 

\ X ~ pl :cOnst 
\ X \ P2=const 

�9 P3 :con]st 
Pz, -~co nst. 

1 
T 

Fig .  3 

During studies on the decomposition of carbonates and the dehydration of 
crystalline hydrates we have observed [41 that for a process carried out at different 
pressures of the gaseous reaction products it is possible to find a temperature ]~ 
referred to as the isokinetic temperature, at which the reaction proceeds with a 
fixed value of the rate constant (Fig. 3). 

A knowledge of the isokinetic temperature/~ allows determination of the coeffi- 
cient b in compensation equation (6). 

At certain temperatures T 1 and T2 under pressures p] and P2, let In k 1 = In k2. 
Hence: 

E'  E" 
In A '  - In A "  - (7) 

R i q  RT2 " 

In order to obtain Eq. (6) it is necessary to assume T1 = Te = P in Eq. (7). Then: 

A E  
a In A - (8) 

R ' / ~  

and from Eqs (6) and (8) one obtains 

1 
b - (9) . R . / ~  " 

In subsequent parts of the present paper it will be shown that the empirical 
relations (6) and (9) and their correlation can be theoretically justified if the given 
process of thermal dissociation can be described by the Arrhenius equation. 

2. Thermal Anal. 17, 1979 



PYSIAK, SABALSKI: COMPENSATION EFFECT 291 

Therefore we shall prove that: 
(1) the existence of the isokinetic temperature fl is a necessary condition for 

the appearance of the compensation effect; 
(2) the appearance of the compensation effect is evidence of the existence of 

the isokinetic temperature fl; which is equivalent to the statement about the exist- 
ence of a line-pencil relationship between k, E, T and A, provided that these 
quantities are interrelated by the Arrhenius equation. 

Mathematical,iustification of the existence of the &okinetic temperature 
and compensation effect 

The basis for further considerations will be the Arrhenius equation (5a) rear- 
ranged to the following form: 

1 
Ink + E ' - - -  l n A - -  0. (10) 

RT 

1 
If  we put -~- = x and In k = y in Eq. (10), then for given values of A and E (R = 

= const) we obtain a linear equation: 

E 
y + ~ - ' x -  lnA = 0. (11) 

It frequently occurs in practice that, under certain assumptions, the lines (11) 
have a common point (Xo, Yo) for different values of A and E, i.e. they form a 
pencil. 

In such cases it appears that: 

Theorem 1. If  the lines represented by Eq. (1 I) form a pencil, a linear relationship 
exists between In A and E (the compensation equation is valid). 

Proof: Let Eq. (11) be fulfilled for certain (Yo, Xo) and El, E2, Ea, A1, A2, Aa, i.e. let: 

E I  
Yo+ ~ - X o -  lnA 1 = 0  (12) 

E2 
Yo + - R -  x ~  lnA2 = 0 (13) 

E3 
Yo + ~-Xo - In A3 = 0. (14) 

By subtracting Eq. (13) from (12) and Eq. (14) from (13), we obtain, after re- 
arrangement: 

X o 
l n A 2 -  lnA 1 = - R - ( E 2 - E 0  (15) 
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X 0 
In As - In A2 = ~--  (Ea - E2). (16) 

I f  it is assumed that  E 1 # Ez and Es # E2, we can divide Eq. (15) by (E2 - El), 
and Eq. (16) by (E s - E2) to obtain the following relation: 

x o l n A 2 - 1 n A  1 l n A s -  lnA2 

R E2 - E 1 Es --E2 
(17) 

A l n A  . 
which means that  the quotient of  differences - -  is constant,  as the selec- 

A E  
t ion of  E 1, E2, E3 was completely arbitrary. 

I f  the quotient of  differences is constant  (see Lemma 1 below), the derivative 
with regard to the variable is also constant,  which means (compare Lemma 2 
below) that the relationship between the value of  the function and the variable 
is linear. 

A In A ~ in A 
Hence if - c o n s t . ,  then - - =  const, too ,  and for  certain 

AE gE 
constants a and b we have In A = a + bE, which was to be proved. 

Lemma 1. I f  a quotient o f  differences Af(x~ 
~f  Ax  

rivative ~x  = const. 

- const, for all x0, then the de- 

Proof :  F r o m  the definition of  the derivative it is known that :  

Of(x) _ lira f (x~  + h) - f ( X o )  
Ox h-o h 

Let us assume a sequence hn --+ 0, such that  h n # 0 for all n; f rom Heine's defi- 
nition of  convergence of  a function we have:  

lira f (x~ + h) - f(Xo) ___ lim f ( x~  + hn) - f(Xo) 
h~o h hn 

besides: f(Xo + hn) - f(Xo) Af(xo) 

h n AN 
- - ,  where Ax  = hn. 

Af(xo) 
F r o m  the assumption above, - const., which means that  the sequence 

Ax  
f(Xo + hn) - f ( X o )  is constant  for all x0, and the limit o f  the sequence 

an = hn ~f  
is an for all x 0. Hence, ~xx is always constant,  which was to be proved. 
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0f Lemrna 2. Let the derivative -~x  be constant; then f is a linear function of  x, 

i.e. for certain constants a and b we havef(x)  = a + b x  for all x. 

Proof: From Lagrange's theorem, on the average it follows that for any quantities 
x, y there exists a 0 ~ (0,1) such that 

f ( y )  - f ( x )  
- f ' [ x  + O ( y  - x)] 

y - x  

if the function f is differentiable in the interval (x, y) .  Let us assume an interval 
(x  o, x ) ;  for a certain 0 we have: 

f ( x )  - f ( X o )  O f  
- [xo + O ( x  - Xo)l .  

x - x o Ox 

of 
Since ~ = b, where b is a const., then 

f ( x )  - f ( x o )  _ b .  

x --  X o 

The mode of  reasoning will not change on changing x 0. In such a case we have 
f ( x )  = f ( X o )  + b ( x  - Xo); let a = f ( X o )  - b �9 Xo, and hence f ( x )  = a + b x ,  which 
was to be proved. It  has appeared that Theorem 1 may be reversed. 

Theorem 2. I f  In A is a linear function of E, then the straight lines described by 
Eq. (11) form a pencil. 

Proof: Let us have E 1, t72, t73, A1, A2, A3 such that for certain constants a and b 
we can write: 

lnA 1 = a + b " E  1 

l n  A2 -~ a + b " E ~ 

lnA 3 - - a + b ' E z .  

For given values of  E and A we obtain the following linear equations: 

E 1 
y + ~ - - x -  lnA 1 =  0 (18) 

E., 
y+ ~ - - x - l n A 2 = 0  (19) 

Ea 
y +  ~ - - x - l n A z = 0 .  (20) 
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If  the straight lines represented by Eqs 0 8 - 2 0 )  are to form a pencil, a neces- 
sary and sufficient condition is [7] that the matrix of the system of equations be 
equal to 0. It should therefore be proved that: 

l, R ' - l n  A 1 

1, E2 - l n A 2  
R '  

E3 
1, R ' - I n  A3 

It should be noted that: 

-1, E~ 
R '  

1, 
R '  

1, 
R '  

- l n  A17 -1, E1 
R '  

- l n A s  = 1, E~ 
R '  

- l n A a  1, E~ 
-1 k- R 

= 0 .  

- a  - b E  1 

- a  - b E 2  = 0 

- a  - b E ~  
..A 

since it is a necessary and sufficient condition that a linear relationship exists 
between the lines or the columns of that matrix. In our case we have: 

- a  - b E  1 

= - a  

1 

- b R  

R 

R 

E ~  

- a  - b E 2  

- a  - b E 3  
L J _ j l ~ j  

which means that the third colulnn is a linear combination of the first and second 
columns with coefficients - a ,  - b R .  Since the columns of the obtained matrix 
are linearly correlated, the matrix is equal to 0, which was to be proved. 

Theorems 1 and 2 may be formulated jointly in the following way: 

Theorem 3. If  the quantities k, E, T, A are intercorrelated by Eq. (10), then: 
The quantities In A and E are linearly correlated if and only if there is a pencil 

relationship between In k and + (i.e. the lines (11) form a pencil). 

This interesting fact leads to the conclusion that a dual relationship holds here, 
that is: 
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Theorem 4. If the quantities k, E, T, and A are intercorrelated by Eq. (10) then: 
A pencil relationship between In A and E exists if and only if there is a linear 

1 
relationship between In k a n d - - .  

T 

Proof: The proof, intuitively obvious, is analogous to the proofs for Theorems 1 
and 2 and requires only some changes in the substitution in Eq. (10). By substi- 
tution o f E  = x and In A = y in Eq. (10) we obtain: 

1 
l n k + x  R T -  y = 0 "  (21) 

In order to prove Theorem 4 we can follow the procedure applied in the proof  
of Theorem 1. Let us assume that the straight lines (21) form a pencil; then for 
certain x o, Yo, kl, k2, k3, 7"1, T2, T3 the following relationships will hold: 

1 
l n k  1 + x o - - y 0 =  0 (22) 

Rrl 
1 

l n k 2 + X O R ~ - y 0 = 0  (23) 

1 
In ka + x0 R~T~ - Yo = 0. (24) 

By following the procedure applied above for Eqs (12-14) ,  we get: 

x o In ka - In k z In kz - in kl 
- - ( 2 5 )  

R 1 1 1 1 

Ta T2 T2 T 1 

A l n k  
which means that the quotient of differences - -  is always constant, as 

1 
A -  

T 
the values kl, k2, ka, 7"1, T2, T3 were selected completely arbitrarily. Upon making 

t 
use of Lemmas 1 and 2, we may conclude that Ink  and ~ -  are linearly correlated. 

On following a procedure analogous to that applied in the proof of Theorem 2, 
1 

we assume that I nk  and ~ -  are linearly correlated. Let us take kl, k2, ka, T~, T2, 
1 

= b l  I n k  2 = a +  b ~  and I n k  3 =  a + b 1 T 3 such that I nk  a a + T1,  ~ ,  

where a and b are constants. 
For k and T thus selected we have the following linear equations: 

1 
l n k  1 +  x - g  T -  ~ - y =  0 (26) 

1.11 
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1 
lnkz + x - - -  y = 0 (27) 

RT2 

1 
In k3 + x - -  - y = 0. (28) 

RT~ 

Similarly as in Theorem 2, straight lines represented by Eqs (26-28)  form a 
pencil if and only if : 

i-- 

In kl, 

in k2, 

In ks, - 1 
. RT 3 ' _ 

- 1  
RT~' 

1 
- 1  = 0 .  

RT2 '  

1 

Making use of the fact that the first column is a linear combination of the second 
and the third columns, we have: 

- 1 7 
In kl, -- 1 

RT 1 ' 

1 
In k2, - 1 

RT2' 

1 
In k3, - 1 

RT3' -- _1 

- 1 1 
a + b  - 1 -  

T I '  RT~' 

1 1 
a + b  

T2' RT2 
- 1  

1 1 

_a + b T3 RT3 - 1 j  

r h I -  
a +  T~ 

1 
a + b ~  = - a  

a + b  l~ 
L_ T 3 _ l  L- 

= 0  

r 7 1 - 
- 1  

RT1 

1 
- 1  + Rb 

gr2 

1 
- 1  

.J LRT3 

and: 

hence the straight lines (26) -  (28) form a pencil, which was to be proved. 

Theorems 3 and 4 lead to the formulation of very interesting definitions. 

Definition 1. A pair of quantities (or parameters) (Xl, x2) is correlated with a pair 
of quantities (Yl, Y2) if and only if there exist real functions fl ,  f2, 91, g2 such that: 

(1) quantities fl(xl), f2(x2) are linearly correlated if and only if a pencil corre- 
lation exists between gl(Yl), g2(Y2); 
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(2) quanti t ies  gl(Yl) ,  g~(Ye) are l inear ly corre la ted  if  and  only i f  a penci l  cor-  
re la t ion exists between f l ( x O ,  f2(xz) .  

The funct ions f l ,  f2, gl ,  g2 will be referred to  as measur ing  scales (or in shor t  
scales) for  the quanti t ies  xa, xz, Yl, Y2, respectively [5]. 

On the basis o f  Def ini t ion 1 and Theorems  1 - 4  we can present  the above  
p roved  re la t ionship  in the fo rm of  the fol lowing theorem.  

F u n d a m e n t a l  theorem 1. I f  the quanti t ies  k, E, T, A are in tercorre la ted  by Eq. (10), 
then the pa i r  (A, E)  is cor re la ted  with the pa i r  (k, T). 

1 
Proof :  Let  us have f l ( x )  = In x,  f2(x)  = x ,  g l (x )  = In x ,  g2(x) - , and 

R ' x  
x 1 = A, x2 = E, Yl = k, Y2 = T. In te rpre ta t ion  of  Def ini t ion 1 conforming  to 
the contents  o f  Theorems 3 and  4 means  tha t  the condi t ions  of  Defini t ion 1 are 
fulfilled, which is to say, that  condi t ion  1 is equivalent  to Theorem 3, and con- 
d i t ion 2 is equivalent  to Theorem 4, which was to be proved.  

One can also suppose  tha t  the der ived corre la t ion  is re la ted with the fo rm of  
Eq. (10), which means  tha t  in the given empir ica l  s i tuat ion many  more  s imilar  
corre la t ions  can exist. The Arrhen ius  equa t ion  is very frequent ly  appl ied,  and  no t  
only  in the field o f  chemical  react ions,  so an answer to the above  given quest ion 
would  be o f  very general  significance. 

In  searching for  the answer  to this quest ion,  our  bases will be the dual  re la t ion-  
ships [6] well known in the field of  mathemat ics ,  as well as cer ta in  concept ions  
o f  p ro jec t ion  geometry  [7]. Wi th  the Arrhen ius  equat ion  regarded as a p ro jec t ion  
corre la t ion  it will be shown tha t  the proofs  ot  Theorems 1 - 4  become a simple 
consequence of  fundamenta l  concept ions  of  pro jec t ion  geomet ry  thus leading to 
new and surpr is ing conclusions.  

The Arrhenius  equation in project ion coordinates.  
N e w  correlation relationship 

In numerous considerations of analytical geometry problems, a much higher degree of 
generalization and elegance may be achieved by replacing the Cartesian coordinates by uni- 
form coordinates or by projection coordinates in general. Such coordinates make it possible 
to represent points, lines, planes, and, more generally, hyperplanes. 

There is no analytical difference between projection coordinates of points and correspond- 
ing Plucker coordinates of lines. The treatment of these coordinates depends merely on the 
method of interpretation. 

The points of the n-order Cartesian space R n are ordered systems (series of n in length) of 
numbers (Yl, Y2 . . . . .  Yr). 

Let us relate this system with a system of n -t- 1 numbers: 1, Yx, Y2 . . . . .  Yn, and with all 
systems proportional to it of general form 2, 2yx, ;.Y2 . . . . .  .~Yn, where: ~t = any number differ- 
ent from zero. The systems ~t, 2yl, 2y~ . . . . .  2Yn will be referred to as uniform (common) 
coordinates of point y = (y~, Y2 . . . . .  Yn) in the space R n. 

The coordinates defined in this manner are determined with a precision corresponding to 
the coefficient 2 7~ 0, and this property is taken into account when they are called the uniform 
coordinates. 

J. Thermal Anal. 17, 1979 



298 P Y S I A K ,  S A B A L S K I :  C O M P E N S A T I O N  E F F E C T  

A point  with uni form coordinates  x0, Xl . . . . .  x.~ will be deno ted  as {x0, xl . . . . .  xn}. In order  
to represent  in Cartesian coordinates  a point  with given un i form coordinates ,  it is sufficient 

X l  Xn 
to change  the system Xo, xl, . . . ,  x n into the  system 1, - - , . . . ,  - - ,  if x o 5~ O, as in Cartesian 

coordina tes  a point  is represented  as x l ,  . . . ,  . 
x0  

It is also interesting to point  out  the geometr ical  sense of  un i form coordina tes  x0, x 1 . . . . .  xn, 
when x 0 = 0. 

If  L is a line in space R ~, which is de te rmined  by a po in t  a = (aa . . . . .  an) and  a vector  
= (~1, ez, - �9  %), then  the  line in the space R n is identical  with a set o f  points  p ( t )  = a +  

1 a I -1- 
+ t " a =- ( a  1 + t .  ~ l  . . . . .  a n -}- t " O~n) = { 1 ,  a I + t " ~1 . . . . .  a n + t " 0~n} = t t 

an } + ~1 . . . . .  - -  ~ + ~n , where:  t ~ 0. I f  (t)--~ oo,  the  point  p ( t )  depar ts  unlimitedly f rom 

a, and  its un i fo rm coordina tes  tend  to the  values 0, ~ ,  ~z, . . . ,  ~n. It is therefore  intuitively 
conceivable that  such a system may be regarded  as a point  in infinity, i.e. as a so-called 
improper  point  o f  line L. Parallel lines have a c o m m o n  improper  point ,  and  non-para l le l  
lines have different  imprope r  points .  A line supplemented  by its imprope r  point  is re fe r red  to 
as a project ion line. 

A project ion line differs f rom a Cartesian line (Euclidean line) by a single addi t ional  point  
which terminates  it in a cer tain sense, thus  making the  line similar to a circle of  " inf in i te"  
radius.  

A t ransi t ion f rom a Cartesian to a uni form system may of ten  be effected by adding  unity at 
the end of  the series of  numbers  represent ing the Cartesian system. Thus, if the  Cartesian 
coordinates  are  represen ted  by (yl, Y2 . . . . .  Yn), the  uni form coordinates  become (yx, Ys . . . . .  1). 
The use of  ano the r  analytical representa t ion  of  a point  facilitates the analysis o f  a linear equa- 
t ion on a plane, and it makes it possible to derive conclus ions  essential  for  the  considera t ions  
presen ted  on p. 3. 

I f  in Cartesian coordina tes  an equat ion of  a line in plane (R s) has the  fo rm A x  + B y  + C = 
= 0 (where A 2 + B s > 0), then  the t r ans fo rmat ion  to project ion coordina tes  {(x, y)} -+ 

{x, y, 1} --* {x 1, x 2, x3} changes  the linear equat ion to the  fo rm A x  1 + B x  2 + Cxa = O, 

x 1 x2  
since the  system {x, y, 1} is p ropor t iona l  to the system xl, xs, x3; hence x = - -  and  y = - - ,  

Y 3 X 3 

and  inversely. Hence,  in any system of  un i form coordinates  (project ion coordinates)  every 
line in a plane may be represented  by the  equat ion (m) a~x~ + asxs  + aaxa = 0, in which no t  
all the values a l, a2, a3 disappear,  i.e. ] a l l  + [ a~ I + I a~l = 0. 

If  in equat ion (m) we replace the coefficients a~, as, a3 by number s  p roper t iona l  to these 
coefficients the result  is the  same straight line, since by mult iplying equat ion (m) by ,~ # 0 
( b l =  f l ' a l ;  bz---- 2 " a s ;  b 3 =  )~ 'a3  we obta in  the equat ion ( m m )  b ~ ' x l +  b 2 ' x ~ +  
+ b3 " x3 =- 0, and  if x~, x2, x~ fulfil the  condi t ions  of  equat ion  ( m m ) ,  then  by dividing them 
by c~ we can conclude  that  x~, xz, x3 satisfy equat ion (m). A n d  inversely, if xl, xs, x3 satisfy 
equat ion (m), they also satisfy equat ion (mm) ,  which means  that  equat ions  (m) and  (m m) 
represent  one  and the  same line. 

In an analogous  way as for  a point ,  it is possible  to derive for lines coordina tes  {al, as, a~}, 
which are the  Plucker  coordina tes  o f  a line within the  propor t ional i ty  precision limit. 

In  this case an equat ion of  the type alu  1 + asu s + a3u 3 = 0 (where [all + las[ + [a31 # 0) 
may be given the  following in terpre ta t ion : 

(1) the equat ion is a necessary and  sufficient condi t ion  for a point  o f  coordinates  {xt, x2, xa} 
to belong to a line of  coordioates  {al, a~, a~}, and  

(2) the equat ion represents  a pencil  o f  lines passing th rough  a point  {a~, as, a3} of  coordi -  
nates  x~, xs, xa}, and  for  this reason it may also be referred  to as an equat ion of  a point .  

Thus, we can regard  the  equat ion alu  I -[- asu 2 -[- asu~ -~- 0 either as the  equat ion  of  a line 
or  as the  equat ion of  a pencil  o f  lines in the same coordinates ,  depending  on whether  the 
coord ina tes  {a~, a~, a~} are  t rea ted  as coordina tes  of  a line or o f  a point .  
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The projection geometry approach may also be applied to the transformed 
Arrhenius equation (10). Multiplication of Eq. (10) by R gives: 

1 
R ' l n k + E ' ~ - - R ' l n A  = 0 .  (29) 

Relation (29) is equivalent to a projection equation of a line. I t  enables the con- 
struction of the following correlation table: 

Table 1 

C o o r d i -  

~ . ~  I l a t e s  a I a 2 a 3 u 1 u s u~ 
N o .  

I 
R 

Ink 

R 

R 

E 

E 

1 
7 

E 

In A 

In A 

In A 

R 

In k 

R 

In k 

In k 

1 

T 

1 

T 

E 

1 

T 

R 

R 

R 

In A 

The results of the correlation table are: 

Theorem 5. The quantities (E, A) are correlated with the quantities (k, T). 

Proof: Equation (29) is simultaneously an equation of a line and an equation of a 
pencil of lines, depending on whether ( %  a2, a3) or (ul, u2, u3) are cooordinates 
of a point or of a line. 

Let us assume, therefore, that for different a 1, a2, aa the quantities ul, u2, us 
are constants and satisfy the projection equation, which means that for certain 

1 
k0, T o the quantities In k, ~ are constant for different A and E. Let Ul, u.,, us 

be coordinates of a line. In such a case the projection equation establishes a linear 
relationship between A and E. I f  at the same time we settle A and E in this equation 
and we regard a~, a2, as as coordinates of a line, we can get a line from a pencil 

1 
that establishes a relationship between I n k  and - - .  

T 
In an analogous way it is possible to establish the other correlations too. 

Theorem 6. The quantities (k, E, A) are correlated with (T). 
Proof: Second line of Table 1. 

Theorem 7. Quantities (A, T) are correlated with (k, E). 
Proof: Third line of Table 1. 
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Theorem 8. The quantity (E) is correlated with (k, T, A). 

Proof: Fourth line of Table 1. 

The method of constructing a table leading to the above theorems is as follows: 
from each term in Eq. (29) we take one factor to obtain the values al, a2, a3, and 
the remaining quantities are treated as ul, u2, u3. In this way we obtain 8 relations, 
among which 2 pairs are of dual type, so it is sufficient to take into consideration 
only four of them. 

The starting Eq. (10) may also be multiplied by T to give a projection equation 
1 

T �9 In k + E . ~ -  T" In A = 0, for which a new table of correlation relation- 

ships may be constructed. 

Examples oJ empirical relationship. 
Deviation factor (physical sense) of  correlation 

Upon analyzing the Arrhenius equation as an equation of a projection cor- 
relation, we have stated, among others that the pairs of quantities (A, E) and 
(k, T) are intercorrelated in appropriate scales. This means that, for a certain 
pair (k0, To), often referred to as the isokinetic pair, and for any values of (A, E) 
the transformed Arrhenius equation (29) is fulfilled. According to the earlier { 1} 
findings therefore we can treat the quantities In k0, ~ ,  R as the Plucker co- 

ordinates of a line represented in Fig. 4. 
An analogous line has been obtained by one of us [8, 9] after it had been 

established that points on the line correspond to different values of the pressure 
(p) of the gaseous reaction product under the experimental conditions. 

In the previous sections we have established that, if there is a linear relationship 
between (A, E), then (k, T) must remain in a pencil relationship (in appropriate 

scales). This is the result of a different look at the triplet In k 0, T o '  R , now re- 

garded as the projection coordinates of a point, which is equivalent to the treat- 
ment of Eq. (29) as an equation of a pencil (Fig. 5) with a common point of co- 

{ lnk~ 1 ) 
ordinates R ' RTo " 

An identical pencil has also been found experimentally [8, 9]. In this case dif- 
ferent lines correspond to different values of the pressure of the gaseous reaction 
product under experimental conditions. 

It is possible to state, therefore, that the pressure is the deviation factor (it 
decides about the physical sense) of this correlation, as different points in the line 
in Fig. 4 and different slopes of the lines in Fig. 5 correspond to different values 
of pressure. This statement conforms fully with considerations presented above. 
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In ko. 

/ 

Fig. 4 

c 
[ [n ko 1 / 

. . . . .  \W-- ~22  

. I P "  

m 

F i g .  5 

c 

/ 

tn A o - -  

i 

K~ 
E 

F i g .  6 

i t  should further be mentioned that in the case under consideration the pressure 
of  the gaseous reaction product (as a deviation factor) is also decisive for the motive 
modulus of  the process A p  = Po - P ,  and it may be a measure of  the remoteness 
of  the reaction system from the state of equilibrium. 

I f  we assume that a pencil relationship exists for (A, E) (Fig. 6), then for certain 
(A 0, E0) a linear relationship also exists for (k, T). 
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This case, too,has been studied experimentally [8, 9]. It permitted us to formulate 
a hypothesis that the theoretically postulated deviation factor of that correlation 
is a very complex parameter. It seems very probable that it is connected with both 
the crystalline structure of the reaction substrate and the degree of its defective- 
ness. 

The presented examples demonstrate that every correlation is accompanied 
by two different deviation factors (that seem to be responsible for the existence 
of that correlation) but in many cases their nature (physical sense) is not completely 
clear. It seems to be advisable, however, to introduce such parameters, as they 
are measurable quantities. Hence: 

Definition 2. If in appropriate scales a pair of quantities (xl, x2) is correlated with 
a pair (y~, yu), then the slope of lines in the pencil of one relation of this correlation 
will be referred to as a measure of the deviation factor of that relation. 

Conclusion 

The representation of the Arrhenius equation and of known empirical relation- 
ship in the form of projection correlations is a first attempt to simplify fundamental 
problems of chemical kinetics with the aid of the less familiar and apparently 
more complicated theory of prNection geometry. 

Such an approach not only makes it possible to prove that the Zawadzki -  
Bretsznajder rule, compensation effect and isokinetic temperature are merely 
simple consequences of interpretation of the Arrhenius equation as a projection 
correlation, but it also indicates the existence of new and evidently not investigated 
relations and their mutual correlations. 

The theoretical considerations presented in this work have been illustrated 
with experimental data on topochemical reactions of thermal dissociation of 
solids of the type Asolirl ~ gscii d -I- Cgas .  It seems, however, that the character 
of the Arrhenius equation and of relationships derived from this equation is 
decisive for a high degree of generalization of the problems under consideration. 

Transformation of the Arrhenius equation to the form (29) that enables its 
presentation as a projection correlation leads to theoretical discrimination of eight 
deviation factors which impart to the correlations a definite (although complicated 
and not always recognized) physical sense. On the basis of earlier works [3, 8, 9] 
we have indicated that three of these factors may be decisive for the course of 
thermal dissociation. One may assume, therefore, that all the remaining factors 
(amounting to 23 = 8) are combinations of the three fundamental ones. Thus, it 
may be concluded that the Arrhenius equation is a good model of a process so far 
as the kinetics of this process are controlled by the fundamental deviation factors. 

The above hypothesis seems to be confirmed by application of the presented 
procedure to a more precise (with respect to the Arrhenius equation) relation: 

E 
R T  k = A " T m " e 
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wh ich  af te r  t r a n s f o r m a t i o n  to  the  f o r m :  

1 
R l n k -  R l n A -  R I n T  m + E ' - = 0  (30) 

T 

b e c o m e s  a p r o j e c t i o n  c o r r e l a t i o n  in space  R a be tween  a l inear  r e l a t ion  a n d  a penc i l  

r e l a t ion  o f  planes.  T h e r e  are  e ight  such  c o r r e l a t i o n  a n d  s ixteen c o r r e s p o n d i n g  

d e v i a t i o n  fac tors .  I t  seems tha t  in m o d e l  (30) it  is poss ib le  to d i s c r imina t e  f o u r  

f u n d a m e n t a l  d e v i a t i o n  fac tors ,  and  all  the  o thers  ( a m o u n t i n g  to 24 = 16) w o u l d  

be s o m e  c o m b i n a t i o n s  o f  them.  

Such  r e a s o n i n g  leads  to the  c o n c l u s i o n  tha t  the  f o r m  o f  a m a t h e m a t i c a l  m o d e l  

depends  on  the  i n t e n t i o n  o f  its au tho r ,  such  or  a n o t h e r  n u m b e r  o f  fac tors  inf luenc-  

ing  the  course  o f  the  process  be ing  t a k e n  in to  a c c o u n t  d u r i n g  the  cons t ruc t i on  

o f  the  mode l .  
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R~SUMg -- On prdsente la justification mathdmatique de l'existence de la tempdrature iso- 
cin6tique et de l'effet de compensation, ainsi que de la relation de ces quantitds avec la loi de 
Zawadzki-Bretsznajder. 

ZUSAMMENFASSUNG- - -  Der mathematische Beweis ftir die Existenz der isokinetischen Tem- 
peratur und des Kompensationseffekts sowie ffir den Zusammenhang dieser GrSBen mit 
der Zawadzk i -  Bretsznajder-schen GesetzmiiBigkeit wird erbracht. 

Pe3roMe--FloKa3aHo, qTO npaBnnO 3aBa~cKoro-EpexcHa_~epa, KoMneHcai~HoHnr,i~ 3qbqbe~T a ri30- 
Ir TeMnepaTypa ItBJIIttOTCN HpOCTbIM cY~e~CTBHeM ypaBneH~ AppenHyca, KaK oTpa- 
~ammaa Koppennur~n. UCTaHOBJIeHO, qYO xaI~a~ n~TepnpeTaun~l ypaBHeHr~ AppeHnyca nO3- 
BOJIneT pa3.rlnq~VITb qbaKTopbI oTxnoneHrm, KOTOpbIe rlpl, IJlaloT onpe)~e~eHm, t~ (XOTZ n He Bcer~Ia 
npOCTOJ? I~ ycTanaBJInBaeMt,l~) qbI13w~ecKrI~ CMt,lCJI H3BeCTtIOI~ 3M1]HpH'tecKo~ I<oppeJIaUmi. 
Ilpe~cTaBaena BO3MO~KHOCTB ycTanoBsiermn nOB~,IX KoppeanrSnOHm, ix COOTaOmenn~ Ha OC- 
HoBe 9TOrO cnoco6a paccym~eHrin. 
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